

Lishen (Qingdao) New Energy Co., Ltd

CONFIDENTIAL

Rev: 1 Page: 1 of 15 Date: 20190615

Product Specification

Lithium-ion Power Cell of LP71173207-272Ah

Lishen (Qingdao) New Energy Co.,Ltd

www.lishen.com.cn

CONFIDENTIAL
Rev: 1
Page: 2 of 15

Date: 20190615

Lishen (Qingdao) New Energy Co., Ltd

1. Scope

The product specification describes the requirement of the Prismatic Lithium Ion Power Cell to be supplied to the customer by Lishen Power Battery System Co., Ltd. If there be any additional information required by the customer, customer are advised to contact Lishen Power Battery System Co., Ltd.

2. General Specifications

2.1 Abbreviation Definitions

 C_{I} —the rated capacity (in ampere-hours) of the cell for a one-hour discharge.

 I_I — a current corresponding to the manufacturer's rated capacity (in ampere-hours) for a one-hour discharge, which is equal to, in numeral, the C_I

In the below specification $I_I(A) = 272A$.

SOC — the state of charge.

DOD — the depth of discharge.

The NEW BATTERY — — the battery since the date of the product is made, the state of temperature within 30 days

INDOOR TEMPERATURE——25°C ±2°C

2.2 Specification

	Item	Specification		
1	Cell Type	Lithium -ion power cell		
2	Cell Model	LP71173207-272Ah		
3	Nominal Capacity☆	272Ah(The NEW BATTERY)		
4	Nominal Voltage☆	3.2V		
5	AC-impedance(1000Hz)☆	0.12 ± 0.05 m Ω		
6	Weight	5302±100g		
7	Maximum Charge Current at Room Temperature	1.0 <i>I</i> ₁ (Continuous) 2 <i>I</i> ₁ (60s)		
	Charging Voltage	3.65V		
8	Maximum Discharge Current at Room Temperature	1.0 <i>I</i> ₁ (Continuous) 2 <i>I</i> ₁ (60s)		
	Discharge End Voltage	2.5V (>0°C), 2.0V(≤0°C)		
9	Max Operating Temperature Range			
	Charge	0°C ~65°C		
	Discharge	-35°C ~ 65°C		
10	Optimal Operating Temperature Range			
	Charge	15°C ~35°C		
	Discharge	15°C ~35°C		
11	Storage Temperature			
	1 month	-30℃~ 45℃		

CONFIDENTIAL
Rev: 1
Page: 3 of 15

20190615

Lishen (Qingdao) New Energy Co., Ltd

6 months $-20^{\circ}\text{C} \sim 35^{\circ}\text{C}$

*Cells should be stored at 20%SOC-40%SOC or the voltage is between 3.275V and 3.305V.

3. Appearance and Dimension

Appearance and Dimension refer to the attached drawing 1.

4. Characteristics

4.1 Test Condition

Cells should be tested within a month after the product is made and the charge-discharge times of the test cells should be less than 5. Unless noted otherwise, all tests are to be conducted at standard temperature which is $(25\pm2)^{\circ}$ C and standard humidity which is $(65\pm2)^{\circ}$ M. The room temperature mentioned in this specification means $(25\pm2)^{\circ}$ C.

4.2 Test Equipment

a) Voltmeter Inner impedance> 1000Ω per volt.

b) Slide caliper The slide caliper should have a scale of 0.02mm.

c)Impedance meter The impedance meter should be operated at AC 1kHz.

d) Electronic Scale The electronic scale should have a minimum scale of 0.001g.

4.3 Test Process and Specification

4.3.1 The room or high temperature charge method(Slow charging):

Cells are charged with Constant Current and Constant Voltage (CC/CV) method at the environment temperature of $(25\pm2)^{\circ}$ C or $(45\pm2)^{\circ}$ C. The constant current is $0.5~I_{I}$ (A) and the constant voltage is 3.65V, Charge shall be terminated when the charge current has tapered to 0.05 I_{I} (A), then store cells for 1h.

4.3.2 The room or high temperature Charge method(Fast charging):

Cells are charged with Constant Current and Constant Voltage (CC/CV) method at the environment temperature of $(25\pm2)^{\circ}$ C or $(45\pm2)^{\circ}$ C. The constant current is $1.0~I_{I}$ (A) and the constant voltage is 3.65V, Charge shall be terminated when the charge current has tapered to $0.05~I_{I}$ (A), then store cells for 1h.

4.3.3 Test Item and Specification

Test Item and Specification Should refer to table 2.

CONFIDENTIAL

Rev: 1 Page: 4 of 15 Date: 20190615

Lishen (Qingdao) New Energy Co., Ltd

Number	Item	Test profile	文控		Specification		
1	1.D.	1.Eyeballing`			No Deep Scratch, No		
1	Appearance and Dimension	2.Test cells' dimension with slide caliper			Transformation, No leakage,		
2	Weight	Electronic Scale			5302±100g		
2	On an Cinnel Welter - A	Measure the open circuit voltage within 1h after charging			OCV≥3.35V		
3	Open Circuit Voltage☆	cells per 4.3.2.					
	Nominal discharge capacity ☆	Discharge cells at a 1.0 $I_1(A)$ current to 2.5V within 1h					
		after charging cells per 4.3.2. Record the capacity. The			1.0 I₁ Capacity ≥272Ah (The NEW BATTERY)		
4		cycle can repeat 5 times, when the capacity difference of 3					
		times continuously are less than 3%, the test can be					
		terminated. Tack the average of last 3 discharge capacity.					
				r 4.3.2. Discharge cells to			
			_ ` ′	t. And record the capacity.			
					2.0 I ₁ (A)(60s,50%SOC);		
5	Maximum charge current at						
	Room Temperature	tapered to 0.05 I_1 (A). ("n" is an integer)					
		50%SOC: Charge cells per 4.3.2. Discharge cells 30min at					
				cells to 3.65V in a n I_1 (A)			
		current. ("n" is a					
	Maximum discharge current at Room Temperature		_	t a $1.0 I_1$ (A) current to 2.5 V			
			•	And record the capacity.			
		Charge cells per 4.3.2. Discharge cells in a n I_1 (A) current $1.0 I_1$ (A)(Continuous			1.0 <i>I</i> ₁ (A)(Continuous);		
6		to 2.5V. ("n" is a	• /	1 0 I (A)	2.0 I ₁ (A)(60s,50%SOC);		
				1.0 I_1 (A) current for 30min			
		after charging cells per 4.3.2. Discharge cells to 2.5 V at a n I_1 (A) current. ("n" is an integer)					
		II II (A) current.	(II IS all line	ger)	3500th Discharge Capacity		
	Cycle Life at Room Temperature☆				≥80% Nominal Capacity		
		Charge cells per 4.3.2. Discharge cells to 2.5V at a			(200th Discharge Capacity		
				Discharge capacity shall be	≥97% Nominal Capacity or		
7				Cells should be clamping	500th Discharge Capacity		
		during cycling.	sooo eyeles.	cons should be elamping	≥93% Nominal Capacity or		
		daring cycling.			1000th Discharge Capacity		
					≥90% Nominal Capacity)		
	Cycle Life at High Temperature☆				2000th Discharge Capacity		
		Charge cells per 4.3.2. Discharge cells to 2.5V at a		≥80% Nominal Capacity			
				Discharge capacity shall be	(200th Discharge Capacity		
8				Cells should be clamping	≥93% Nominal Capacity or		
		during cycling.			500th Discharge Capacity		
					≥88% Nominal Capacity)		
9	Charge Retention☆	After charging p	per 4.3.2, store	the testing cells for 30 days	Capacity Retention ≥96.5%		

CONFIDENTIAL

Rev: 1 Page: 5 of 15 Date: 20190615

	Lishen (Qingdao) New Ener	rgy Co., Ltd Date: 201906	Date: 20190615		
		at the environment temperature of (25 ± 2) °C, then	(25℃)		
		discharge the cells to 25 M at a $1.0 I_1$ (A) current. Record			
		the discharge capacity.			
		Charge cells per 4.3.2. Discharge the cells to 2.5V at a			
		$1.0 I_1$ (A)current. Record the recovery capacity.	Capacity Recovery ≥95% (45°C)		
		After charging per 4.3.2, store the testing cells at (45±2)°C	(43 0)		
		for 30 days, then discharge the cells to 2.5V at a 1.0 I_1 (A)			
		current. Record the discharge capacity.			
		Charge cells per 4.3.2. Discharge the cells to 2.5V at a			
		1.0 I ₁ (A)current. Record the recovery capacity.			
10	Characteristics at high temperature	Cells shall be charged per 4.3.2 and store for 5h at	Residual canacity>97% of		
10		(55 ± 2) °C, then discharge to 2.5V at 1.0 I_I (A) and			
	-	measure the capacity.			
	Characteristics at low temperature	Cells shall be charged per 4.3.2 and store for 24h at	☐ Residual—canacity>70%—of ☐		
11		(-20±2) °C, then discharge to 2.0V at 1/3 I_1 (A) and			
	•	measure the capacity.	1 3		
		Cells, charged per 4.3.2, with thermocouples, shall be			
		short circuited 10 minutes in fuming cupboard by			
12	Short-circuit Test★	connecting the positive and negative terminals through the	No Explosion, No Fire		
		external wires. And the resistance of external wires will be			
		less than $5m\Omega$. Observe 1h.			
		After charged per 4.3.2, test cells (with thermocouple)			
		shall be overcharged with a sort of method below:			
		1st Method: Charge test cells at 1 I_1 (A), and stop test			
13	Overcharge Test★	when the voltage reached 1.5 times of end voltage.	No Explosion, No Fire		
		Observe 1h.			
		2nd Method: Charge test cells at 1 I_1 (A), then stop the test			
		when the charge time reached 1h. Observe 1h.			
		Cell shall be charged per 4.3.2. Discharge cells at a 1 I_1	No Explosion, No Fire, No		
14	Over Discharge test★	(A) current for and stop the test when the discharge time	leakage		
		reached 90 min. Observe 1h.			
		Cell shall be charged per 4.3.2. Put cells (with			
		thermocouple) into the oven, then close the door of it The			
15	Thermal Test★	oven temperature shall be raised at a rate of 5 °C ±2 °C/min	No Explosion, No Fire		
13	Thermal Test	to a temperature of (130±2) °C, the cells shall remain at	TWO Explosion, TWO THE		
		this temperature for 30min. Then, stop the test and observe			
		1h.			
	Crush Test★	After charged per 4.3.2, crush the cells vertically at the			
16		speed of (5±1) mm/s until cells'deformation reach to 30%	No Explosion, No Fire		
10		or the voltage tapered to 0V, or the press reach to 200kN.			
		Observe 1h.			

CONFIDENTIAL
Rev: 1
Page: 6 of 15

Lishen (Qingdao) New Energy Co., Ltd Date: 20190615

Charge cells per 4.3.2. Then drop cells from a height of 1.5m to the concrete ground. Cells shall be dropped with the terminals down.

Charge cells per 4.3.2. Then drop cells from a height of No Explosion, No Fire, No leakage

5. Caution

5.1 Charge

- a) NO over-charge, the charge voltage should not be over 3.65V.
- b) NO reverse charging
- c) The charge temperature range is 0° C ~ 65 $^{\circ}$ C. The charge must be stopped when any part of the cell reach to 65 $^{\circ}$ C.
- d) Optimal charge temperature range is 15 $^{\circ}\text{C} \sim 35\,^{\circ}\text{C}_{\,\circ}\,$ Do not charge for a long time in the temperature less than 15 $^{\circ}\text{C}_{\,\circ}\,$

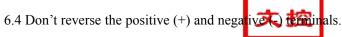
5.2 Discharge

- a) No short circuit
- b) The end of discharge voltage must be over 2.0V.
- c) The discharge temperature range is -35° C $\sim 65^{\circ}$ C. The discharge must be stopped when any part of the cell reach to 65° C.
- d) Optimal discharge temperature range is 15 $\,^\circ\! C \sim 35\,^\circ\! C$. Do not discharge for a long time in the temperature more than $35\,^\circ\! C$
- 5.3 Put cells away from children.

5.4 Storage and Usage

- a) For any short time storage (in one month), cell should be in a clean and dry area (humidity \le 65% RH) and at -30°C \sim +45°C at 20 \sim 40%SOC .
- b) For any long time storage (in 6 month), cell should be in a clean and dry area (humidity \leq 65% RH) and at -20°C ~+35°C at 20~40%SOC.
 - c) During the course of storage or usage, keep the cells upright.

6. Warning


- 6.1 Avoid overheat in any circumstances.Don't modify or disassemble the battery. It will be dangerous, and may cause ignition, heating, leakage or explosion.
- 6.2 Don't put cells in overheat circumstances or disposed in fire ,don't put cells under the sunshine.
- 6.3 Don't short-circuit positive(+) and negative(-) terminals. Keep away from metal or other conductive materials. Jumbling the batteries of direct contact with positive(+) and negative(-) terminals or other conductive materials may cause short-circuit and may even cause fire and

CONFIDENTIAL
Rev: 1
Page: 7 of 15

Date: 20190615

Lishen (Qingdao) New Energy Co., Ltd explosion.

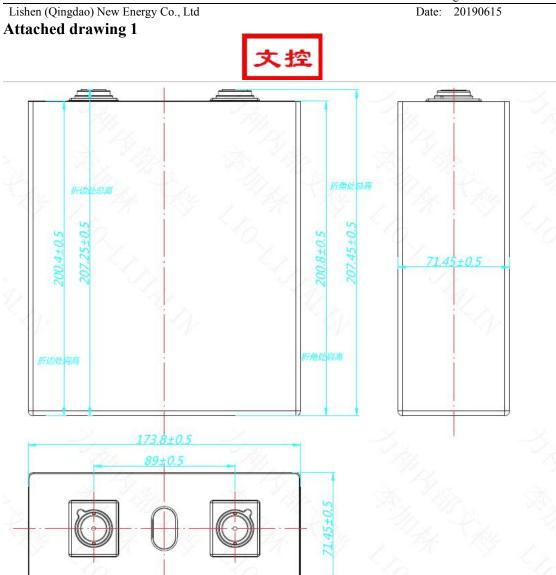
- 6.5 Don't put cells in water or other conductive liquids or let cells absorb amoisture.
- 6.6 Don't impact cells excessively.
- 6.7 Don't solder the battery directly. Excessive heating may cause deformation of the battery components such as the gasket, which may lead to the battery swelling, leakage, explosion, or ignition.
- 6.8 Don't use abnormal cell which has damages by shipping stress, drop, short or something else, and which gives off electrolyte odor.
- 6.9 Don't contact cans directly or with other conductive materails during the using process.
- 6.10 Keep away form static circumstances during storage and using.
- 6.11 Don't use cells together with other one-shot batteries and secondary batteries. Don't use cells together with different packages, types and brands.
- 6.12 Stop using and process the cells accordingly when the following circumstances happened: getting hot sharply, smelling, changing colors, deformation or others.
- 6.13 If there is leaked electrolyte from batteries, please scrub it away with fresh water to avoid any skin discomfort.

7. Shipping

- 7.1 During transportation, keep the battery from acutely vibration, impacting, insolation, drenching.
 - 7.2 The delivery battery should be at a half charged state.

8. Others

If customers need to use or operating cells beyond the specified range of this file, please contact Tianjin Lishen Battery Joint-Stock Co., Ltd. Manufacturer will not be responsible for trouble caused by using cells beyond the specified range of this file.


Manufacturer will not be responsible for trouble occurred by matching electric circuit, cell pack and charger.

Manufacturer will be exempt from warrantee any defect cells during assembling after acceptance.

CONFIDENTIAL Rev: 1

Page: 8 of 15

Remarks: The size of drawing is the cell within insulation gasket and blue film. The cell thickness was tested at 3000N pressure.