INVERTER USER MANUAL

GoKWh 3000W Pure Sine Wave Inverter with Charger 12V/24V/48V Series

Table of Contents

Table of Contents	1
1. Important safety information	2
1.1 General Safety Precautions	2
1.2 Precautions When Working with Batteries	2
2. Introduction	3
2.1 General Information	3
2.2 application	3
2.3 Product Structure	4
2.4 feature	5
2.5 Electrical performance	5
2.5.1 Inverter	5
2.5.2 AC charger	6
2.5.3 Transfer	8
2.5.4 Automatic frequency adjustment	9
2.5.5 Automatic voltage regulation	9
2.5.6 Power saving mode	10
2.5.7 Protect	11
2.5.8 Control panel (optional)	13
2.5.9 LED indicator and LCD	11-13
2.5.10 Fan running	14
2.5.11 Other features	15
3.Install	16
3.1 Location	16
3.2 DC Wiring recommendation	16
3.3 AC Wiring	
4.Troubleshooting Guide	18
5.Product parameter	
6.Base installation	

1. Important safety information

This manual contains important instructions for all inverter/charger models, which should be followed during the installation and maintenance of the inverter.

1.1 General Safety Precautions

- 1-1-1.Do not expose the Inverter to rain, snow, spray, bilge or dust. To reduce risk of hazard, do not cover or obstruct the ventilation openings. Do not install the Inverter in a zero-clearance compartment. Overheating may result. Allow at least 30CM(11.81 inches) of clearance around the inverter for air flow. Make sure that the air can circulate freely around the unit. A minimum air flow of 145CFM is required.
- 1-1-2. To avoid a risk of fire and electronic shock. Make sure that existing wiring is in good electrical condition; and that wire size is not undersized. Do not operate the Inverter with damaged or substandard wiring.
- 1-1-3. This equipment contains components which can produce arcs or sparks. To prevent fire or explosion do not install in compartments containing batteries or flammable materials or in locations which require ignition protected equipment. This includes any space containing gasoline-powered machinery, fuel tanks, or joints, fittings, or other connection between components of the fuel system.

See Warranty for instructions on obtaining service.

- 1-1-4. Do not dis-assemble the Inverter/Charger. It contains no user serviceable parts. Attempting to service the Inverter/Charger yourself may result in a risk of electrical shock or fire. Internal cHacitors remain charged after all power is disconnected.
- 1-1-5. To reduce the risk of electrical shock, disconnect both AC and DC power from the Inverter/Charger before attempting any maintenance or cleaning. Turning off controls will not reduce this risk

CAUTION: Equipment damage

The output side of the inverter's AC wiring should at no time be connected to public power or a generator. This condition is far worse than a short circuit. If the unit survives this condition, it will shut down until corrections are made.

Installation should ensure that the inverter's AC output is, at no time, connected to its AC input.

Warning: Limitations On Use

SPECIFICALLY, PLEASE NOTE THAT THE HC/HP SERIES INVERTER/CHARGER SHOULD NOT BE USED IN CONNECTION WITH LIFE SUPPORT SYSTEMS OR OTHER MEDICAL EQUIPMENT OR DEVICES.

1.2 Precautions When Working with Batteries

- 1-2-1. If battery acid contacts skin or clothing, wash immediately with soH and water. If acid enters eye, immediately flood eye with running cold water for at least 20 minutes and get medical attention immediately.
- 1-2-2. Never smoke or allow a spark or flame in vicinity of battery or engine.
- 1-2-3. Do not drop a metal tool on the battery. The resulting spark or short-circuit on the battery of other electrical part may cause an explosion.
- 1-2-4. Remove personal metal items such as rings, bracelets, necklaces, and watches when working with a lead-acid battery. A lead-acid battery produces a short-circuit current high enough to weld a ring or the like to metal, causing a severe burn.

1-2-5. To reduce the risk of injury, charge only rechargeable batteries such as deep-cycle lead acid, lead antimony, lead calcium gel cell, absorbed mat, NiCad/NiFe or Lithium battery. Other types of batteries may burst, causing personal injury and damage.

2. Introduction

2.1 General Information

This Series Pure Sine Wave Inverter is a combination of an inverter, battery charger and AC auto-transfer switch into one complete system with a peak conversion efficiency of 88%.

It is packed with unique features and it is one of the most advanced inverter/chargers in the market today. It features power factor corrected, sophisticated multi-stage charging and pure sine wave output with unprecedentedly high surge cHability to meet demanding power needs of inductive loads without endangering the equipment.

For the regular model, when utility AC power cuts off(or falls out of acceptable range), the transfer relay is de-energized and the load is automatically transferred to the Inverter output. Once the qualified AC utility is restored, the relay is energized and the load is automatically reconnected to AC utility.

The This Series Inverter is equipped with a powerful charger of up to 110Amps (depending on model). The overload cHacity is 300% of continuous output for up to 20 seconds to reliably support tools and equipment longer

Another important feature is that the inverter can be easily customized to Battery priority via a DIP switch, this helps to extract maximum power from battery in renewable energy systems.

Thus, the Pure Sine Wave Inverter is suitable for Renewable energy system, Utility, RV, Marin and Emergency Hpliances.

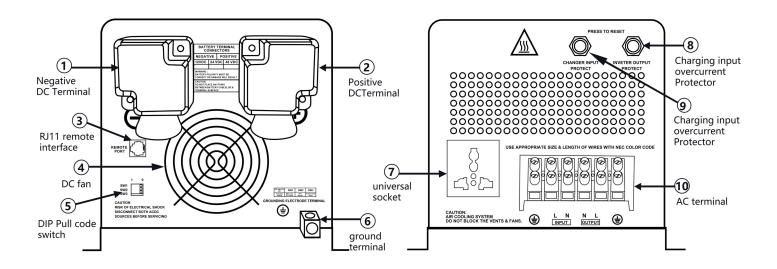
To get the most out of the power inverter, it must be installed, used and maintained properly. Please read the instructions in this manual before installing and operating.

2.2 application

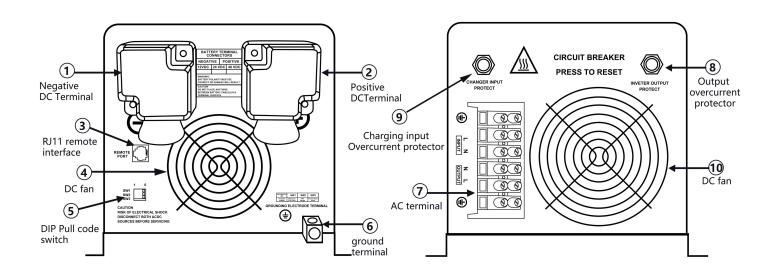
Power tools-circular saws, drills, grinders, sanders, buffers, weed and hedge trimmers, air compressors.

Office equipment – computers, printers, monitors, facsimile machines, scanners.

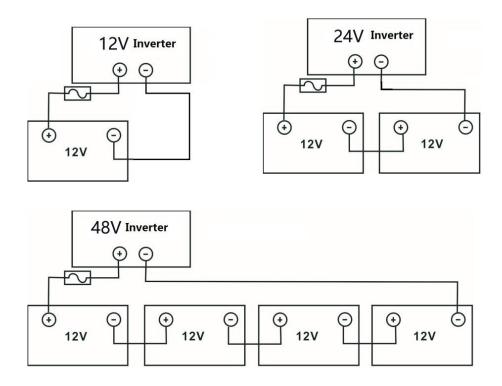
Household items – vacuum cleaners, fans, fluorescent and incandescent lights, shavers, sewing machines.


Kitchen Hpliances – coffee makers, blenders, ice markers, toasters.

Industrial equipment – metal halide lamp, high – pressure sodium lamp.


Home entertainment electronics – television, VCRs, video games, stereos, musical instruments, satellite equipment.

2.3 Product Structure


1-3KW Operation diagram

4-6KW Operation diagram

Connect all battery packs as below chart

2.4 feature

- 1. The overload capacity can be as high as 300% of the rated power (for 2 seconds)
- 2. "Energy-saving mode" with low no-load current and low loss can save energy to the utmost extent
- 3. Three-stage intelligent charging management system with power factor function
- 4. 8 battery types are available, plus battery activation function
- 5. The maximum charging current can reach 90A, which can be set to 0%-100%
- 6. The maximum conversion time is 10ms to ensure continuous uninterrupted power
- 7. Intelligent remote control
- 8. When the AC power is restored, the power will be delayed for 5 seconds
- 9. Low battery voltage start and bypass function
- 10. Bypass capacity of 30A/40A
- 11. Smart fan control logic
- 12. Able to deal with all kinds of bad situations
- 13. Support dual voltage output
- 14. 12VDC self-recovery start function specially designed for renewable energy systems
- 15. Support for lithium battery communication (optional), WiFi module (optional)

2.5 Electrical performance

2.5.1 Inverter

Topology

The inverter/charger is built according to the following topology.

Inverter: Full Bridge Topology.

AC Charger: Isolate Boost Topology

Because of high efficiency Mosfets and 16bit, 4.9MHz microprocessor and heavy transformers, it outputs The peak efficiency is 88%.

Overload Capacity

The HC series inverters have different overload capacities, making it ideal to handle demanding loads. 1 For 110%

Load<125%($\pm 10\%$), no audible alarm in 14 minutes, beeps 0.5s every 1s in the 15th minute, and Fault(Turn off) after the 15th minute.

2 For 125%<Load<150%(±10%), beeps 0.5s every 1s and Fault(Turn off) after the 1 minute.

3 For $300\% \ge \text{Load} > 150\% (\pm 10\%)$, beeps 0.5s every 1s and Fault(Turn off) after 20s.

2.5.2 AC charger

Series is equipped with an active PFC (Power Factor Corrected) multistage battery charger. The PFC feature is used to control the amount of power used to charge the batteries in order to obtain a power factor as close as possible to 1.

Unlike other inverters whose max charging current decreases according to the input AC voltage, charger is able to output max current as long as input AC voltage is in the range of 164-243VAC (95-127VAC for 120V model), and AC freq is in the range of 48-54Hz(58-64Hz for 60Hz model).

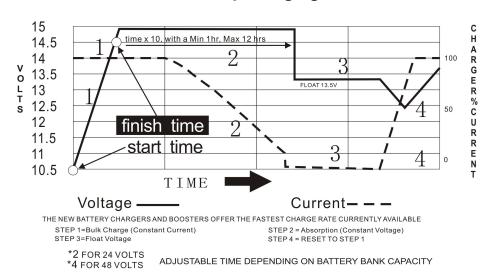
The inverter is with a strong charging current of 120Amp (for 4KW,12V), and the max charge current can be adjusted from 0%-100% via a liner switch at the right of the battery type selector. This will be helpful if you are using our powerful charger on a small cHacity battery bank. Fortunately, the liner switch can effectively reduce the max charging current to 20% of its peak.

Choosing "0" in the battery type selector will disable charging function.

There are mainly 3 stages:

Bulk Charging: This is the initial stage of charging. While Bulk Charging, the charger supplies the battery with controlled constant current. The charger will remain in Bulk charge until the Absorption charge voltage (determined by the Battery Type selection) is achieved.

Software timer will measure the time from A/C start until the battery charger reaches 0.3V below the boost voltage, then take this time as T0 and $T0 \times 2 = T1$.


Absorb Charging: This is the second charging stage and begins after the absorb voltage has been reached. Absorb Charging provides the batteries with a constant voltage and reduces the DC charging current in order to maintain the absorb voltage setting.

In this period, the inverter will start a T1 timer; the charger will keep the boost voltage in Boost CV mode until the T1 timer has run out. Then drop the voltage down to the float voltage. The timer has a minimum time of 1 hour and a maximum time of 12 hours.

Float Charging: The third charging stage occurs at the end of the Absorb Charging time. While Float charging, the charge voltage is reduced to the float charge voltage (determined by the Battery Type selection*). In this stage, the batteries are kept fully charged and ready if needed by the inverter. If the A/C is reconnected or the battery voltage drops below 12Vdc/24Vdc/48Vdc, the charger will reset the

If the A/C is reconnected or the battery voltage drops below 12Vdc/24Vdc/48Vdc, the charger will reset the cycle above.

If the charge maintains the float state for 10 days, the charger will deliberately reset the cycle to protect the battery.

Table 2.5.1 Battery Charging Processes

Table 2.5.2 Battery Type Selector

Switch Setting	Description	Fast Mode / VDC	Float Mode / VDC						
0		Charger Off							
1	Gel USA	14.0	13.7						
2	AGM 1	14.1	13.4						
3	LiFePO4	14.6	13.7						
4	Sealed Lead Acid	14.4	13.6						
5	Gel EURO	14.4	13.8						
6	Open Lead Acid	14.8	13.3						
7	Calcium	13.6							
8	De-sulphation	15.5 (4 Hours then Off)							

For 12Vdc Mode Series (*2 for 24Vdc Mode; *4 for 48Vdc Mode)

De-sulphation

The de-sulphation cycle on switch position 8 is marked in red because this is a very dangerous setting if you do not know what you are doing. Before ever attempting to use this cycle you must clearly understand what it does and when and how you would use it.

What causes sulphation? This can occur with infrequent use of the batteries(nor), or if the batteries have been left discharged so low that they will not accept a charge. This cycle is a very high voltage charge cycle designed to try to break down the sulphated crust that is preventing the plates taking a charge and thus allow the plates to clean up and so accept charge once again.

Charging depleted batteries

The inverter allows start up and through power with depleted batteries.

For 12VDC model, after the battery voltage goes below 10V, if the switch is still (and always) kept in "ON" position, the inverter is always connected with battery, and the battery voltage does not drop below 2V, the inverter will be able to charge the battery once qualified AC inputs are present.

Before the battery voltage goes below 9VDC, the charging can be activated when the switch is turned to "Off", then to "ON".

When the voltage goes below 9VDC, and you accidently turn the switch to OFF or disconnect the inverter from battery, the inverter will not be able to charge the battery once again, because the CPU loses memory during this process.

Model Watt	Battery Voltage	AC Charger Current	Model Watt	Battery Voltage	AC Charger Current
1.000	12 Vdc	45 ± 5 Amp		12 Vdc	70 ± 5 Amp
~	24 Vdc	25 ± 5 Amp	2.000	24 Vdc	35 ± 5 Amp
1.500	48 Vdc	15 ± 5 Amp		48 Vdc	20 ± 5 Amp
	12 Vdc	90 ± 5 Amp		12 Vdc	120 ± 5 Amp
3.000	24 Vdc	50 ± 5 Amp	4.000	24 Vdc	65 ± 5 Amp
	48 Vdc	30 ± 5 Amp		48 Vdc	40 ± 5 Amp
5.000	24 Vdc	80 ± 5 Amp	6.000	24 Vdc	90 ± 5 Amp
3.000	48 Vdc	50 ± 5 Amp	3.000	48 Vdc	60 ± 5 Amp

Tabel 2.5.3 AC Charging Current for model

The charging capacity will go to peak in around 3 seconds. This may cause a generator to drop frequency, making inverter transfer to battery mode.

It is suggested to gradually put charging load on the generator by switching the charging switch from min to max.

Choose the optimal charging current of 0.2C , The letter C represents the battery capacity

2.5.3 Transfer

While in the Standby Mode, the AC input is continually monitored. Whenever AC power falls below the VAC Trip voltage (154 VAC, default setting for 230VAC,90VAC for 120VAC), the inverter automatically transfers back to the Invert Mode with minimum interruption to your Hpliances - as long as the inverter is turned on. The transfer from Standby mode to Inverter mode occurs in Hproximately 8 milliseconds. And it is the same time from Inverter mode to Standby mode.

Though it is not designed as a computer UPS system, this transfer time is usually fast enough to keep your equipment powered up.

There is a 15-second delay from the time the inverter senses that continuously qualified AC is present at the input terminals to when the transfer is made. This delay is built in to provide time for a generator to spin-up to a stable voltage and avoid relay chattering. The inverter will not transfer to generator until it has locked onto the generator's output. This delay is also designed to avoid frequent switching when input utility is unstable.

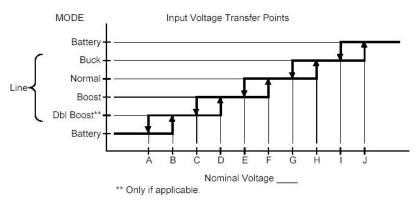
2.5.4 Automatic frequency adjustment

The inverter is with Auto Frequency adjust function.

The factory default configuration for 220/230/240VAC inverter is 50Hz, and 60Hz for 100/110/120VAC inverter. While the output freq can be easily changed once a qualified freq is Hplied to the inverter.

If you want to get 60Hz from a 50Hz inverter, just input 60Hz power, and the inverter will automatically adjust the output freq to 60Hz and vice versa.

2.5.5 Automatic voltage regulation


The automatic voltage regulation function is for full series of Pure Sine Wave Inverter/ Charger except Instead of simply bypassing the input AC to power the loads, the inverter stabilizes the input AC voltage to a range of $230V/120V \pm 10\%$.

Connected with batteries, the inverter will function as a UPS with max transfer time of 10 ms.

With all the unique features our inverter provides, it will bring you long-term trouble free operation beyond your expectation.

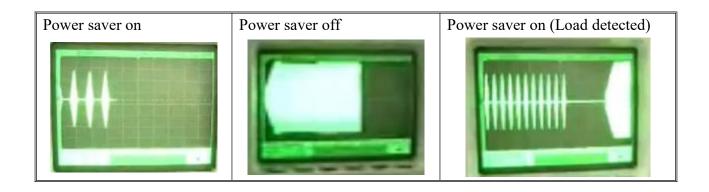
Function Introduction

Table 2.5.5 Input Voltage Transfer Points

(0 ii)		this Series							
(Optional)		(NA/JPN)		(INTL)					
Acceptable Input Voltage Range (Vac)		0-160			0-300				
Nominal Input Voltages (Vac)	100	110	120	220	230	240			
(A) Line low loss N/W (On battery)	75/65	84/72	92/78	168/143	176/150	183/156			
(B) Line Low comeback N/W (On Boost)	80/70	89/77	97/83	178/153	186/160	193/166			
(C) Line 2nd boost threshold (On Boost)	**	**	**	**	**	**			
(D) Line 2nd boost comeback (On Normal)	**	**	**	**	**	**			
(E) Line 1st boost threshold (On Boost)	90	99	108	198	207	216			
(F) Line 1st boost comeback (On Normal)	93	103	112	205	215	225			
(G) Line buck comeback (On Normal)	106	118	128	235	246	256			
(H) Line buck threshold (On Buck)	110	121	132	242	253	264			
(I) Line high comeback (On Buck)	115	127	139	253	266	278			
(J) Line high loss (On Battery)	120	132	144	263	276	288			

2.5.6 Power saving mode

There are 3 different working status for this inverter: "Power Saver Auto", "Power Saver Off" and "Power Off".


When power switch is in "Unit Off" position, the inverter is powered off.

When power switch is turned to either of "Power Saver Auto" or "Power Saver Off", the inverter is powered on.

Power saver function is designed to conserve battery power when AC power is not or rarely required by the loads.

In this mode, the inverter pulses the AC output looking for an AC load (i.e., electrical Hpliance). Whenever an AC load (greater than 25 watts) is turned on, the inverter recognizes the need for power and automatically starts inverting and output goes to full voltage. When there is no load (or less than 25 watts) detected, the inverter automatically goes back into search mode to minimize energy consumption from the battery bank. In "Power saver on" mode, the inverter will draw power mainly in sensing moments, thus the idle consumption is significantly reduced.

The inverter is factory defaulted to detect load for 250ms every 30 seconds. This cycle can be customized to 3 seconds turn SW3 on the DIP switch.

Note: The minimum power of load to take inverter out of sleep mode (Power Saver On) is 25 Watts.

When in the search sense mode, the green power LED will blink and the inverter will make a ticking sound. At full output voltage, the green power LED will light steadily and the inverter will make a steady humming sound. When the inverter is used as an "uninterruptible" power supply the search sense mode or "Power Saver On" function should be defeated.

Exceptions

Some devices when scanned by the load sensor cannot be detected. Small fluorescent lights are the most common example. (Try altering the plug polarity by turning the plug over.) Some computers and sophisticated electronics have power supplies that do not present a load until line voltage is available. When this occurs, each unit waits for the other to begin. To drive these loads either a small companion load must be used to bring the inverter out of its search mode, or the inverter may be programmed to remain at full output voltage.

2.5.7 Protect

The This series inverter is equipped with extensive protections against various harsh situations/faults.

These protections include:

AC Input over voltage protection/AC Input low voltage protection

Low battery alarm/High battery alarm

Over temperature protection/Over load protection

Short Circuit protection (1s after fault)

Back feeding protection

When Over temperature /Over load occur, after the fault is cleared, the master switch has to be reset to restart the inverter.

The inverter will go to Over temp protection when heat sink temp. $\geq 105^{\circ}$ C, and go to Fault (shutdown Output) after 30 seconds. The switch has to be reset to activate the inverter.

The Inverter has back feeding protection which avoids presenting an AC voltage on the AC input terminal in Invert mode.

After the reason for fault is cleared, the inverter has to be reset to start working.

2.5.8 LED indicator and LCD

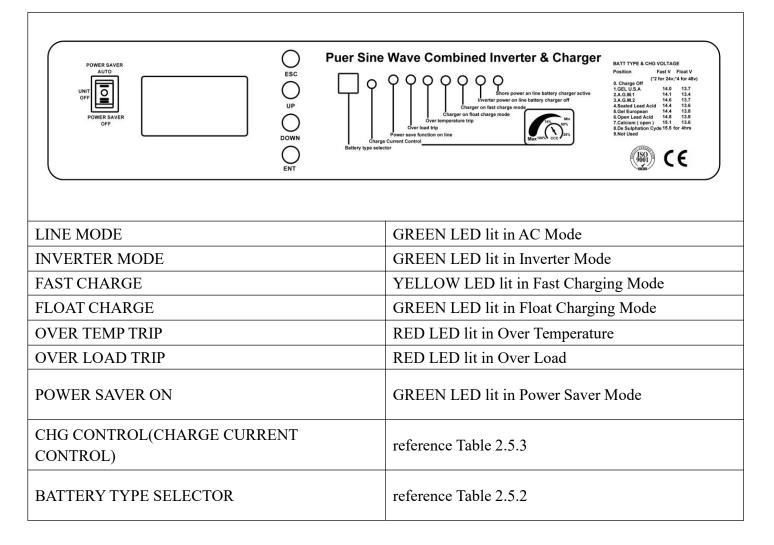
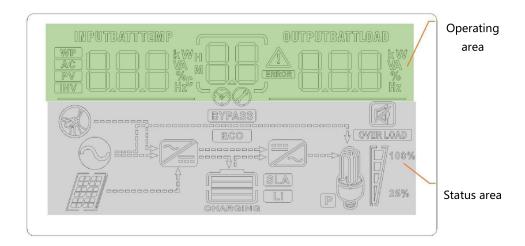



Table 2.5.8 Liquid Crystal Display

Interfaceoperation instructions

one.Interface introduction

- 1.Operating area
- Select the mode to see the information through the short press and long press of ESC, up, down, and ENT
- 2.Status area
- Show the working status of the inverter in real time. two.Introduction to Symbols

two.Introduction to Symbols

symbol	Function description
AC	Indicates communication. Under this option,
[PV]	Indicates a photovoltaic panel. You can view
INV	Indicates INV. You can view INV information
INPUT	Indicates the input mode, which has three options (AC, PV, INV). Flashing once indicates that in the input mode, you can switch up and down through the UP and DOWN buttons to view information in AC, PV, and INV.
OUTPUT	Indicates the output mode, in which the selected AC, PV, INV, specific current, voltage, power factor, and other information can be viewed (different options result in different information).

	Never stop.
\sim	Indicates external
	Indicates that there is an external
25%	0% <p≤25% 100%.<="" 25%<p≤50%="" 50%<p≤="" 75%="" 75%<p≤100%="" displayed="" displays="" exceeds="" four="" grid;="" grids;="" is="" load="" one="" overload="" th="" the="" three="" two="" when=""></p≤25%>
CHARGING	Indicates the battery power. 0% <c≤25% 1="" 2="" 25%<c≤50%="" 3="" 4="" 50%<c≤75%="" 75%<c≤100%="" and="" battery="" c="" capacity.<="" displays="" for="" grid,="" grids,="" grids.note:="" stands="" th=""></c≤25%>

Audible alarm:

Low battery voltage alarm	The green LED of the inverter lights up, and the buzzer beeps for 0.5					
Low battery voltage alarm	seconds every 5 seconds					
High hottom valto as alama	The green LED of the inverter lights up, the buzzer beeps for 1 second					
High battery voltage alarm	every 5 seconds, and the fault is displayed after 60 seconds					
	(1) When 110% <load<125%(<math="">\pm 10%), the first 14 minutes are normal,</load<125%(>					
Overload in inverter mode	and the buzzer will beep for 0.5 seconds per second from the 15th minute,					
	and the fault will be displayed after 15 minutes					
Oxyon toman anatyma	(2) 125% < load < 150% (\pm 10%), the buzzer beeps for 0.5 seconds per					
Over temperature	second, and the fault will be displayed after 60 seconds.					

2.5.9 Control panel (optional)

Front panel settings And functio Idescriptior

Function keys	model	describe
ESC	Display mode	Short press to exit
UP	Display mode	Short press to show up
DOWN	Display mode	Short press to show down
ENT	Display mode	Select display

WARNING

Never cut the telephone cable when the cable is attached to inverter and battery is connected to the inverter. Even if the inverter is turned off. It will damage the remote PCB inside if the cable is short circuited during cutting.

2.5.10 Fan running

For 1-3KW, there is a temperature controlled DC fan that starts working according to the following logic. For 4-6 KW, there are two temperature controlled DC fans. The working mode of the DC fan is the same. Therefore, when the inverter is in energy-saving mode, it is controlled by the following logic on the DC terminal side (see Table 2.5.9)

Condition	Enter condition	Leave condition	Speed
HEAT SINK	T ≤ 60°C	T > 65℃	OFF
TEMPERATURE	65°C≤ T <85 °C	T ≤ 60°C / T ≥ 85°C	50%
TEMPERATURE	T > 85℃	T ≤ 80°C	100%
CHARGER	I ≤ 15%	I ≥ 20%	OFF
CURRENT	20%< I ≤ 50%	I ≤ 15% / I ≥ 50%	50%
CORRENT	I > 50%	I ≤ 40%	100%
LOAD9/	Load < 30%	Load ≥ 30%	OFF
LOAD% (INV MODE)	30% ≤ Load < 50%	Load ≤ 20% / Load ≥ 50%	50%
(IIV MODE)	Load ≥ 50%	Load ≤ 40%	100%

Table 2.5.9 Fan operation

Allow at least 30CM of clearance around the inverter for air flow. Make sure that the air can circulate freely around the unit.

Variable speed fan operation is required in invert and charge mode. This is to be implemented in such a way as to ensure high reliability and safe unit and component operating temperatures in an operating ambient temperature up to 50°C.

- Speed to be controlled in a smooth manner as a function of internal temperature and/or current.
- Fan should not start/stop suddenly.
- Fan should run at minimum speed needed to cool unit.
- Fan noise level target <60db at a distance of 1m.

Serial number	Features	Position: 0	Location: 1
SW1	Battery/AC priority mode	Utility first	Battery priority
SW2	AC input range	184-253VAC	154-264VAC (40Hz+)
SW3	Load sensing cycle	30 seconds	5 seconds

Table 2.5.10 DIP switch function setting

SW1:Solar/AC Priority:

Our inverter is designed with AC priority by default. This means, when AC input is present, the battery will be charged first, and the inverter will transfer the input AC to power the load. Only when the AC input is stable for a continuous period of 15 days, the inverter will start a battery inverting cycle to protect the battery. After 1 cycle normal charging and ac through put will be restored.

The AC Priority and Battery Priority switch is SW1. When you choose battery priority, the inverter will inverting from battery despite the AC input. Only when the battery voltage is reaches low voltage alarm point(10.5V for 12V), the inverter transfers to AC Input, charges battery, and switches back to battery when battery is charged full. This function is mainly for wind/solar systems taking utility power as back up.

SW2:AC Input Range:

There are different acceptable AC input ranges for different kinds of loads.

For some relatively sensitive electronic devices, a narrow input range of 184-253VAC (100-135V for 120VAC model) is required to protect them.

While for some resistive loads which work in a wide voltage range, the input AC range can be customized to 154-264VAC (90-135V for 120VAC model), this helps to power loads with the most AC input power without frequent switches to the battery bank.

SW3:Power Saver Auto Setting:

The inverter is factory defaulted to detect load for 250ms in every 5 seconds. This cycle can be customized to 3 seconds through the SW3 on the DIP switch.

2.5.11 Other features

Battery voltage recover start

After low battery voltage shut off (10V for 12V model/20V for 24V model/40V for 48V model), the inverter is able to restore operation after the battery voltage recovers to 12Vdc/24Vdc/48Vdc (with power switch still in the "On" position). This function helps to save the users extra labor to reactivate the inverter when the low battery voltage returns to an acceptable range in the renewable energy systems. The built in battery charger will automatically reactivate as soon as city/generator ac has been stable for 15 seconds.

WARNING

Never leave the loads unattended, some loads (like a Heater) may cause accident in such cases. It is better to shut everything down after low voltage trip than to leave your load on, due to the risk of fire.

Conformal Coating

The entire line of inverters have been processed with a conformal coating on the PCB, making it water, rust, and dust resistant.

While these units are designed to witthistand corrosion from the salty air, they are not splash proof.

3.Install

3.1 Location

Follow all the local regulations to install the inverter.

Please install the equipment in a location that is Dry, Clean, Cool and that has good ventilation.

Working temperature: $-10^{\circ}\text{C} - 40^{\circ}\text{C}$ Storage temperature: $-40 - 70^{\circ}\text{C}$

Relative Humidity: 0% - 95%, non-condensing

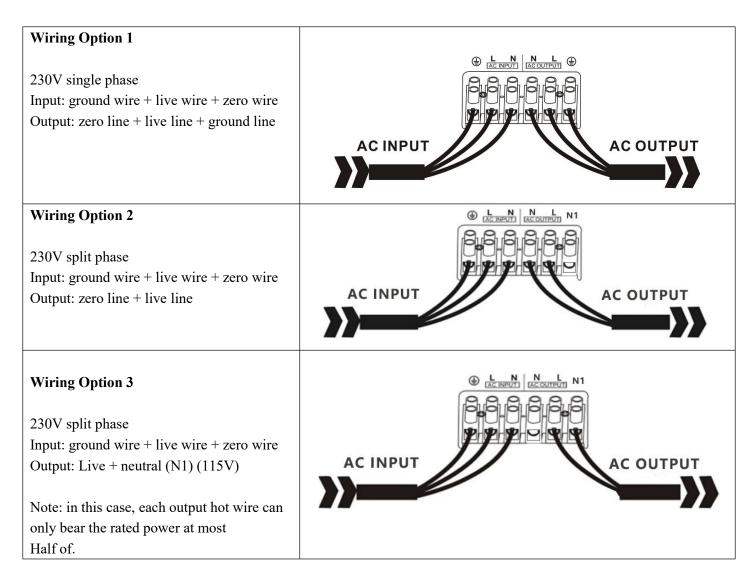
Cooling: Forced air

3.2 DC Wiring recommendation

It is suggested the battery bank be kept as close as possible to the inverter. The following able is a suggested wiring option for 1 meter DC cable.

Please find the following minimum wire size. In case of DC cable longer than 1m, please increase the cross section of cable to reduce the loss.

Model	Battery Voltage	Wire Ga	age /Min	Model	Battery Voltage	Wire Gage /Min		
Watt	Battery Voltage	0~1.0m	1.0~5.0m	Watt	Battery Voltage	0~1.0m	1.0~5.0m	
1.000	12 Vdc	30mm²	40mm²		12 Vdc	60mm²	75mm²	
~	24 Vdc	15mm²	20mm²	2.000	24 Vdc	30mm²	45mm²	
1.500	48 Vdc	10mm²	15mm²		48 Vdc	15mm²	25mm²	
	12 Vdc	90mm²	120mm²		12 Vdc	120mm²	150mm²	
3.000	24 Vdc	45mm²	60mm²	4.000	24 Vdc	60mm²	75mm²	
	48 Vdc	25mm²	30mm²		48 Vdc	30mm²	40mm²	
5.000	24 Vdc	75mm²	95mm²	6.000	24 Vdc	90mm²	120mm²	
5.000	48 Vdc	40mm²	50mm²	0.000	48 Vdc	45mm²	60mm²	


Please note that if there is a problem obtaining for example 90mm² cable, use 2*50mm² or 3*35mm².

One cable is always best, but cable is simply copper and all you require is the copper, so it does not matter if it is one cable or 10 cables as long as the square area adds up. Performance of any product can be improved by thicker cable and shorter runs, so if in doubt round up and keep the length as short as possible.

3.3 AC Wiring

We recommend using 10-5Awg wire to connect to the ac terminal block.

There are 3 different ways of connecting to the terminal block depending on the model. All the wirings are CE compliant, Call our tech support if you are not sure about how to wire any part of your inverter.

WARNING

The output voltage of this unit must never be connected in its input AC terminal, overload or damage may result.

Always switch on the inverter before plugging in any Hpliance.

4. Troubleshooting Guide

Troubleshooting contains information about how to troubleshoot possible error conditions while using the Inverter & Charger.

The following chart is designed to help you quickly pinpoint the most common inverter failures.

Indicator and Buzzer

			Indicator on top cover				LED on Remote Swit					
Status	Item	SHORE POWER ON	INVERT ER ON	FAST CHG	FLOAT CHG	OVER TEMP TRIP	OVER LOAD TRIP	POWER SAVER ON	BATT CHG	INVERTE R	Alarm	Buzzer
	CC	√	×	√	×	×	×	×	√	×	×	×
Line	CV	√	×	√, blink	×	×	×	×	√	×	×	×
Mode	Float	√	×	×	√	×	×	×	$\sqrt{}$	×	×	×
	Standby	√	×	×	×	×	×	×	×	×	×	×
Inverter	Inverter On	×	√	×	×	×	×	×	×	√	×	×
Mode	Power Saver	×	×	×	×	×	×	V	×	×	×	×
	Battery Low	×	√	×	×	×	×	×	×	√	√	Beep 0.5s every 5s
	Battery High	×	V	×	×	×	×	×	×	√	√	Beep 0.5s every 1s
Inverter	Overload On Invert Mode	×	V	×	×	×	V	×	×	V	V	Refer to "Audible alarm"
Mode	Over-Temp On Invert Mode	×	√	×	×	√	×	×	×	√	√	Beep 0.5s every 1s
	Over-Temp On Line Mode	V	×	V	×	V	×	×	V	×	V	Beep 0.5s every 1s
	Over Charge	V	×	√	×	×	×	×	√	×	√	Beep 0.5s every 1s
	Fan Lock	×	×	×	×	×	×	×	×	×	×	Beep continuous
	Battery High	×	V	×	×	×	×	×	×	√	×	Beep continuous
F14	Inverter Mode Overload	×	×	×	×	×	V	×	×	×	×	Beep continuous
Fault Mode	Output Short	×	×	×	×	×	V	×	×	×	√	Beep continuous
	Over-Temp	×	×	×	×	√	×	×	×	×	×	Beep continuous
	Over Charge	×	×	V	×	×	×	×	√	×	×	Beep continuous
	Back Feed Short	×	×	×	×	×	×	×	×	×	×	Beep continuous

Indicator and Buzzer

		Duzzei			LED Ind	icators on	top cover			LEDs or	Remote	Switch	
Status	Item	POWER	OVER	OVER	UNIT	FLOAT	FAST	INVERTE	LINE	BATT	INVER		D.
		SAVER	LOAD	TEMP	ALARM	CHG	CHD	R MODE	MODE	CHG	TER	Alarm	Buzzer
		1	2	3	4	5	6	7	8	1	2	3	
	CC						√		√	√			
Line	CV						√ , Flash		√	√			
Mode	Float					√			√	√			
	Standby								√				
Inverter	Inverter On							√			√		
Mode	Power Saver	√											
	Battery Low				√			√			√	√	Beep 0.5s every 5s
Inverter Mode	Battery High				√			√			√	√	Beep 0.5s every 1s
	Overload On Invert Mode		√		√			√			√	√	Refer to "Audible alarm"
	Over-Temp On Invert Mode			√	√			√			√	√	Beep 0.5s
	Over-Temp On Line Mode			√	√		√		√	√		√	Beep 0.5s
	Over Charge				√		V		√	√		√	Beep 0.5s every 1s
Fault Mode	Fan Lock												Beep
	Battery High							√			√		Beep continuou
	Inverter Mode Overload		٧										Beep
	Output Short												Beep continuous
	Over-Temp			√									Beep
	Over Charge						V			√			Beep
	Back Feed Short												Beep

Symptom	Possible Cause	Recommended Solution		
Inverter will not turn on during	Batteries are not connected, loose	Check the batteries and cable		
initial power up.	battery-side connections.	connections. Check DC fuse and		
		breaker.		
	Low battery voltage.			
		Charge the battery.		

No AC output voltage and no indicator lights ON.	Inverter has been manually transitioned to OFF mode.	Press the switch to Power saver on or Power saver off position.
AC output voltage is low and the inverter turns loads OFF in a short time.	Low battery.	Check the condition of the batteries and recharge if possible.
Charger is inoperative and unit will not accept AC.	AC voltage has dropped out-of-tolerance	Check the AC voltage for proper voltage and frequency.
Charger is supplying a lower charge rate.	Charger controls are improperly set.	Refer to the section on adjusting the "Charger Rate".
	Low AC input voltage.	Source qualified AC power
	Loose battery or AC input connections.	Check all DC /AC connections.
Charger turns OFF while charging	High AC input voltages from the	Load the generator down with a
from a generator.	generator.	heavy load.
		Turn the generator output voltage
		down.
Sensitive loads turn off	Inverter's Low voltage trip voltage	Choose narrow AC voltage in the
temporarily when transferring	may be too low to sustain certain	DIP switch, or Install a UPS if
between grid and inverting.	loads.	possible.
Noise from Transformer/case*	Hplying specific loads such as hair drier	Remove the loads

*The reason for the noise from transformer and/or case

When in inverter mode and the transformer and/or case of the inverter sometimes may vibrate and make noise.

The noise may come from transformer.

According to the characteristics of our inverter, there is one type of load which will most likely to cause rattles of transformer, that is a half-wave load, load that uses only a half cycle of the power(see figure 1). This trends to cause imbalance of magnetic field of transformer, reducing its rated working freq from 20KHz to, say, maybe 15KHz (it varies according to different loads). This way, the freq of noise falls exactly into the range (200Hz-20KHz) that human ear can sense.

The most common load of such kind is hair drier.

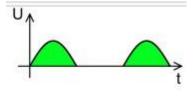
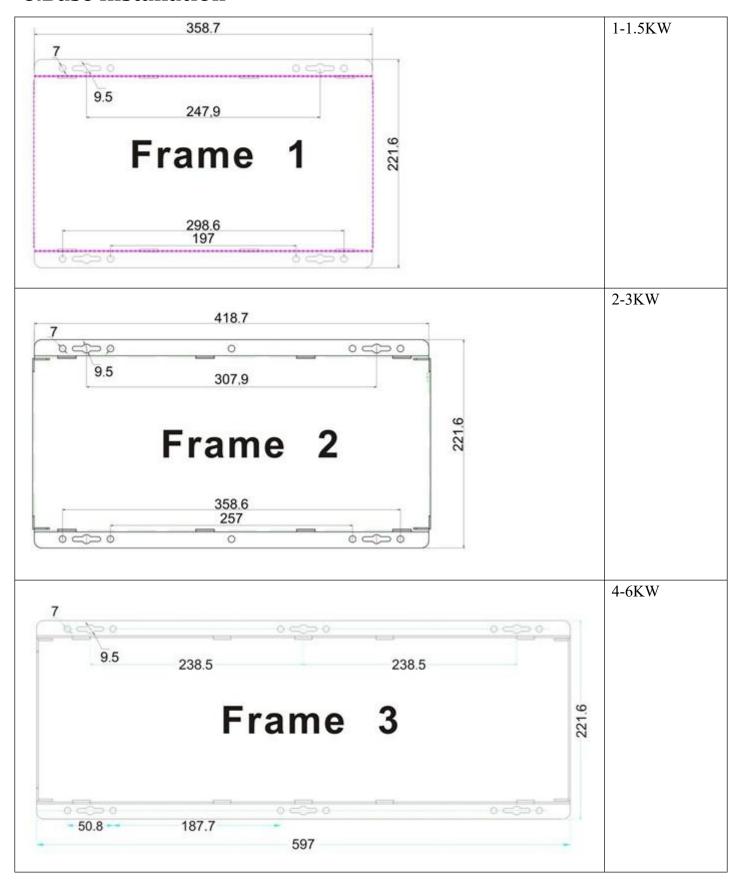


Figure 1

If the noise comes from case.

Normally when loaded with inductive loads, the magnetic field generated by transformer keeps attracting or releasing the steel case at a specific freq, this may also cause noise.

Reducing the load power or using an inverter with bigger cHacity will normally solve this problem. The noise will not do any harm to the inverter or the loads.


5.Product parameter

XThe specifications in this manual are subject to change without notice.

Parameter		ı	1	1		,	1			
MODEL	1kw	1.5kw	2kw	3kw	4kw	5KW	6KW			
Continuous Output	1000W	1500W	2000W	3000W	4000W	5000W	6000W			
Power (W)										
Rated input voltage	12VDC/24VDC/48VDC									
Mains mode specifications): 									
Input voltage waveform	Sine wave (mains or generator)									
ted input voltage 100V/110V/120V/220V/230V/240Vac										
Low voltage		92/184Vac±4%								
shutdown point		92/ 104V dC±4/0								
Low pressure			c	97/194Vac ±4	.%					
recovery point										
High voltage			1	.27/253Vac±4	.%					
shutdown point	12//233VaC±4/0									
High pressure			1	.21/243Vac±4	.%					
recovery point										
Maximum				135/270V rm:	ς					
AC input voltage	153/2/07 11115									
Rated input frequency	ed input frequency 50Hz/ 60Hz (automatic detection)									
Low voltage recovery		40 ETU 3H ² ·								
point frequency		40.5+0.3Hz ;								
Low voltage cut-off	40+0.3Hz;									
point frequency		4υ+υ.3π <i>2</i> ;								
High voltage recovery	69.5+0.3Hz;									
point frequency										
High voltage cut-off		70+0 3Hz ·								
point frequency		70+0.3Hz ;								
Output voltage waveform		Consistent with the input voltage waveform								
Overload protection	Circuit breaker start									
Short circuit protection	Circuit breaker start									
Power Efficiency	>95%									
Conversion current	30A									
Conversion time				10ms						
(Ac to Dc)				101112						
Bypass switching current	Yes									
Bypass maximum										
load current				30A						
Output voltage waveform	Sine wave									
Power factor	0~1.0									
Rated output voltage (V)	120/230Vac									
Rated output	60/50Hz ± 0.3Hz									
frequency (Hz)										
Automatic tracking			Yes (fro	m the first cor	nnection)					

main frequency (Hz)									
Output voltage range				±2% rms					
efficient	>80%								
Overload protection (SMPS load)	(110% <load<125%) <math="">\pm10%: disconnect the output voltage after 15 minutes (125%<load <150%)="" <math="">\pm10%: disconnect the output voltage after 10 seconds Load >150% \pm10%: Disconnect the output voltage after 20 seconds</load></load<125%)>								
Peak capacity(10s)	3000VA	4500VA	6000VA	9000VA	1200VA	15000VA	18000VA		
start the motor	1HP	1.5HP	2HP	3HP	4HP	5HP	6HP		
Short circuit protection			Current li	mit (power o	ff after 10s)				
Circuit breaker size	15	Α	20A		30A	40A			
Rated DC input voltage	12V / 24V/48V								
Minimum DC terminal voltage	10V/20V/40V								
Undervoltage warning	10.5Vdc \pm 0.3Vdc (12V power supply)								
DC input voltage is too low, automatic power off	$10.0 \text{Vdc} \pm 0.3 \text{Vdc} \cdot (12 \text{V power supply})$								
Input overvoltagewarning and power failure	g 16Vdc ± 0.3Vdc (12Vpower supply)								
Input overvoltage recovery	15.5Vdc ± 0.3Vdc(12V power supply)								
Power saving	load ≦2W								
Inverter dimensions (Length*width*height)	360*185	*180mm	420*185	*180mm	597*195*190mm		m		
Packing size (length*width*height)	520*31	15*305	580*315*305mm		760*325*310mm				
Inverter weight	13.5KG	14KG	17KG	21KG	27KG	29.5KG	30.5KG		
Packing operating weight	15.5KG	15.5KG	19KG	23.5KG	29.5KG	31.5KG	32.5KG		
Standard warranty	2 year								

6.Base installation

